nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2021, 01, v.19 44-49
基于改进型DWA的移动机器人避障路径规划
基金项目(Foundation): 国家重点研发计划资助项目(2017YFC0307000)
邮箱(Email):
DOI: 10.15999/j.cnki.311926.2021.01.008
摘要:

针对传统动态窗口法(DWA)中存在的绕行于稠密障碍物区外侧,造成总路程增加,遇见距离相近障碍物构成的"C"形障碍物组合而陷入评价函数失灵等问题,提出了基于改进型DWA的移动机器人避障路径规划。首先,基于本文提出的关键航迹点的概念,提取出A*全局规划路径轨迹中的关键航迹点;然后,以关键航迹点到待评价轨迹的距离作为依据,定义新的评价子函数,获得新型DWA评价函数。仿真结果表明:该基于改进型DWA的移动机器人避障路径规划能够提前规避"C"形障碍物组合,并且提升了传统DWA算法对稠密障碍区的通过性。仿真实验中总迭代次数、运行时间及总路程均缩短了10%以上。

Abstract:

In view of the problems existing in the traditional dynamic windows approach(DWA),such as going around the outside of the dense obstacle area,resulting in an increase in the total distance,and encountering the"C"shaped obstacle(combination)formed by obstacles with similar distances,resulting in the failure of the evaluation function,an obstacle avoidance path planning for mobile robots based on the improved DWA is proposed. First,based on the concept of critical track points proposed in this paper,the key track points in the path of A* global planning are extracted.Then,based on the distance from the critical track point to the trajectory to be evaluated,a new evaluation sub-function is defined and a new DWA evaluation function is obtained. Simulation results show that the improved DWA based mobile robot obstacle avoidance path planning can avoid the"C"shaped obstacles(combination)in advance,and improve the traditional DWA algorithm's passability to dense obstacle areas. In the simulation experiment,the total iteration times,running time and total distance are shortened by more than 10%.

参考文献

[1]马仁利,关正西.路径规划技术的现状与发展综述[J].现代机械,2008(3):22-24,27.MA R L,GUAN Z X.A review of the current situation and development of path planning technology[J].Modern Machinery,2008(3):22-24,27.

[2]FOX D,BURGARD W,THRUN S.The dynamic window approach to collsion avoidance[J].IEEE Robotics and Automation Magazine,2002,4(1):23-33.

[3]SIMMONS R.The curvature-velocity method for local obstacle avoidance[C]//IEEE International Conference on Robotics and Automation.1996,4(4):3375-3382.

[4]SARANRITTICHAI P,NIPARNAN N,SUDSANG A.Robust local obstacle avoidance for mobile robot based on dynamic window approach[C]//International Conference on Electrical Engineering/Electronics.2013:1-4.

[5]SEDER M,PETROVIC I.Dynamic window based approach to mobile robot motion control in the presence of moving obstacles[C]//2007 IEEEInternational Conference on Robotics and Automation.2007:1986-1991.

[6]宋晓茹,任怡悦.移动机器人路径规划综述[J].计算机测量与控制,2019,27(4):1-5,17.SONG X R,REN Y Y.A review of path planning for mobile robots[J].Computer Measurement and Control,2019,27(4):1-5,17.

[7]丛岩峰.基于滚动优化原理的路径规划方法研究[D].长春:吉林大学,2007.CONG Y F.Research on path planning based on rolling optimization principle[D].Changchun:Jilin University,2007.

[8]李宁.面向家庭环境的移动机器人局部路径规划算法研究[D].哈尔滨:哈尔滨工业大学,2018.LI N.Research on local path planning algorithm of mobile robot for home environment[D].Harbin:Harbin Institute of Technology,2018.

[9]银长伟.基于萤火虫算法和动态窗口法的移动机器人混合路径规划[D].重庆:重庆大学,2018.YIN C W.Hybrid path planning of mobile robot based on firefly algorithm and dynamic window method[D].Chongqing:Chongqing University,2018.

[10]王永雄,田永永.穿越稠密障碍物的自适应动态窗口法[J].控制与决策,2019,34(5):927-936.WANG Y X,TIAN Y Y.Adaptive dynamic window method through dense obstacles[J].Control and Decision,2019,34(5):927-936.

[11]王赵江,张岩.对AGV路径规划A星算法的改进与验证[J].计算机工程与应用,2018,54(21):217-223.WANG Z J,ZHANG Y.Improvement and validation of Astar algorithm for AGV path planning[J].Computer Engineering and Applications,2018,54(21):217-223.

基本信息:

DOI:10.15999/j.cnki.311926.2021.01.008

中图分类号:TP242

引用信息:

[1]卞永明,季鹏成,周怡和等.基于改进型DWA的移动机器人避障路径规划[J].中国工程机械学报,2021,19(01):44-49.DOI:10.15999/j.cnki.311926.2021.01.008.

基金信息:

国家重点研发计划资助项目(2017YFC0307000)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文