nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 04, v.23 580-585
考虑时滞和饱和的非线性主动悬架最优控制
基金项目(Foundation): 国家自然科学基金资助项目(51765021); 江西科技学院协同中心开放基金项目(XTCX2101)
邮箱(Email):
DOI: 10.15999/j.cnki.311926.2025.04.017
摘要:

在实际工程中,主动悬架性能会受到多种非线性环节的影响。首先,建立考虑饱和、时滞的非线性主动悬架动力学模型,进一步地分别采用随机线性化方法和积分状态变换处理饱和与时滞非线性环节,通过最优控制将得到的拟线性系统转化为带约束的最优化问题,并利用拉格朗日乘数法求解,进而得到非线性主动悬架最优控制的反馈控制率。最后,通过Quanser1/4主动悬架试验台开展实验研究。结果表明:与传统二次型最优控制器相比,本文设计的非线性最优控制器能保证主动悬架的稳定性,且随着时滞量增加和饱和度的下降,具有一定的鲁棒性。

Abstract:

Active suspension performance was affected by a variety of nonlinear links in practice.Firstly,the dynamic model of nonlinear active suspension considering saturation and time delay were established,and the saturation and time-delay nonlinear links are further processed by stochastic linearization method and integral state transformation,and the resulting quasilinear system was converted into the optimization problem with constraints through optimal control,and the Lagrange multiplier method was used to solve the problem,and then the feedback control rate of the optimal control of the nonlinear active suspension was obtained. Finally,the experimental research was carried out on the Quanser1/4 active suspension test bench. The results show that,compared with the traditional quadratic optimal controller,the nonlinear optimal controller designed in this paper can ensure the stability of the active suspension,and have certain robustness with the increase of time delay and the decrease of saturation.

参考文献

[1] NIU Y,HO D W C. Design of sliding mode control for nonlinear stochastic systems subject to actuator nonlinearity[J]. IEE Proceedings:Control Theory and Applications,2006,153(6):737-744.

[2] ZHOU X,GAO C,LI Z,et al. Observer-based adaptive fuzzy finite-time prescribed performance tracking control for strict-feedback systems with input dead-zone and saturation[J]. Nonlinear Dynamics,2021,103(2):1645–1661.

[3] XU Q,WANG Z,ZHEN Z. Adaptive neural network finite time control for quadrotor UAV with unknown input saturation[J]. Nonlinear Dynamics,2019,98(3):1973-1998.

[4]陈正升,王雪松,程玉虎.考虑扰动与输入饱和的机械臂连续非奇异快速终端滑模控制[J].控制与决策,2022,37(4):903-912.

[5]郑恩让,阮士涛,陈蓓.基于改进扰动观测器的时滞过程控制方法[J].控制工程,2020,27(5):868-877.

[6] XU Y,XIE Z,ZHAO J,et al. Robust non-fragile finite frequency H∞control for uncertain active suspension systems with time-delay using TS fuzzy approach[J].Journal of the Franklin Institute,2021,358(8):4209-4238.

[7]孙娜娜,牛玉刚,贾廷纲.含有死区饱和的不确定离散时滞系统的滑模控制[J].信息与控制,2013,42(4):478-483,491.

[8]熊金凤,陈伟,任萍丽.基于死区和抗饱和补偿的线控制动系统非线性压力控制研究[J].中国工程机械学报,2021,19(2):153-157,163.

[9] WU J,HUANG L. Global stabilization of linear systems subject to input saturation and time delays[J]. Journal of the Franklin Institute,2021,358(1):633-649.

[10]易星,曹青松,许力.含饱和、死区和时滞的主动悬架PID控制器设计[J].机械设计,2020,37(7):98-103.

[11]林小峰,黄元君,宋春宁.基于ADP算法的带时滞及饱和的非线性系统最优控制[J].信息与控制,2012(2):185-192.

[12] BAI W W,ZHOU Q,LI T S,et al. Adaptive reinforcement learning neural network control for uncertain nonlinear system with input saturation[J]. IEEE Transactions on Cybernetics,2020,50(8):3433-3443.

[13]黄英博,吕永峰,赵刚,等.非线性主动悬架系统自适应最优控制[J].控制与决策,2022,37(12):3197-3206.

[14]王涛,罗艳红.带饱和执行器的非线性离散时滞系统的最优控制[J].东北大学学报(自然科学版),2014,35(4):461-465.

[15] ZHANG Z,SONG R,CAO M. Synchronous optimal control method for nonlinear systems with saturating actuators and unknown dynamics using off-policy integral reinforcement learning[J]. Neurocomputing,2019,356(3):162-169.

[16] GOKCEK C,KABAMBA P T,MEERKOV S M. An LQR/LQG theory for systems with saturating actuators[J]. IEEE Transactions on Automatic Control,2001,46(10):1529-1542.

[17]宿浩,唐功友.具有输入时滞的主动悬挂系统的减振控制[J].控制理论与应用,2016,33(4):552-558.

基本信息:

DOI:10.15999/j.cnki.311926.2025.04.017

中图分类号:TP273;U463.33

引用信息:

[1]高小林,曹青松,汝春波.考虑时滞和饱和的非线性主动悬架最优控制[J].中国工程机械学报,2025,23(04):580-585.DOI:10.15999/j.cnki.311926.2025.04.017.

基金信息:

国家自然科学基金资助项目(51765021); 江西科技学院协同中心开放基金项目(XTCX2101)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文